Lesson 23. Maximizing the Directional Derivative

0 Warm up

Example 1. Use the figure below to estimate $D_{\vec{u}} f(2,2)$. Assume $|\nabla f(2,2)| \approx 3$, and the angle between $\nabla f(2,2)$ and \vec{u} is approximately $3 \pi / 4$.

\square

1 Maximizing the directional derivative

- From the previous lesson: in words, the directional derivative of f at (x, y) in the direction of unit vector \vec{u} is
\square
- Questions:
- In which direction does f change the fastest? (steepest ascent or descent)
- What is this maximum rate of change?
- Important theorem: (f is a function of 2 or 3 variables)
- The maximum value of $D_{\vec{u}} f$ is $|\nabla f|$
- The maximum value occurs when \vec{u} is in the same direction as ∇f

- As a result, the gradient is

2 Examples

Example 2. Let $f(x, y)=x e^{y}$.
a. Find the rate of change of f at the point $P(2,0)$ in the direction from P to $Q\left(\frac{1}{2}, 2\right)$.
b. In what direction does f have the maximum rate of change? What is this maximum rate of change?

Example 3. Find the directional derivative of $f(x, y)=\sqrt{x y}$ at $P(2,8)$ in the direction of $Q(5,4)$.

Example 4. Let $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Find the maximum rate of change of f at $(3,6,-2)$ and the direction in which it occurs.

Example 5. Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\vec{i}+\vec{j}$. Hint. Your answer should be an equation in x and y.

